If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2+41n-400=0
a = 1; b = 41; c = -400;
Δ = b2-4ac
Δ = 412-4·1·(-400)
Δ = 3281
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(41)-\sqrt{3281}}{2*1}=\frac{-41-\sqrt{3281}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(41)+\sqrt{3281}}{2*1}=\frac{-41+\sqrt{3281}}{2} $
| 3(x-1)+2x=4(x+2) | | 7x+9=170 | | 9-2c=13 | | x-x*0.1=270 | | 2(v−8)=12 | | 5y–9=36 | | 4x-19+11x=-8 | | 18x-(3x-8)=53 | | 10x^2+6x=6x^2+18x | | 3+3m+8=23 | | 30+4x=5-9x | | 5x+7=-38+4x | | x/9=10/30 | | x/3-2=5x | | 5(2x-1)+x+17=4x+6(x+2) | | 6x-5=115+2 | | 8(2x-5)-3(x+16)=5 | | 9x+7x-2x=80+4 | | 9(3x+7)-4(6x+7)=1 | | x/5=28 | | 5(2)*x=40 | | x-12/3=12 | | 19-(1-4x)-9x=30 | | 19x=9x+1 | | 12x=9x+1 | | 27-7(x-4)+4(2x=3 | | 6x+5=4x+14 | | -117=6x-9 | | 4(5x-1)-8x=11 | | 10x+14=3x+7 | | 5x/3+7/4=4 | | 2x(x+3)=7x+11 |